李雪甄 Hsueh-Chen Lee
吳甦樂人文學院院長
Dean of Ursuline College Of Liberal Arts
聯絡方式:la0001@mail.wzu.edu.tw / (07)342-6031 分機7001
現職|Present
通識教育中心教授 Professor, Center for General Education
教育部教學實踐研究期刊副主編
通識教育中心教授 Professor, Center for General Education
教育部教學實踐研究期刊副主編
Associate Editor, Journal of Scholarship of Teaching and Learning
教育部IGER提升大學通識教育計畫諮詢服務委員
教育部IGER提升大學通識教育計畫諮詢服務委員
國家理論中心(NCTS)數學組科學計算群委員
TWSIAM台灣工業與應用數學學會秘書長
教育部第11屆全國傑出通識教育教師獎計畫協同主持人
學歷|Doctoral Degree
國立中正大學應用數學博士
Ph.D., Applied Math, National Chung Cheng University
專長|Academic Specialties
數值分析、科學計算 , 計算流體力學, 通識教育
國立中正大學應用數學博士
Ph.D., Applied Math, National Chung Cheng University
專長|Academic Specialties
數值分析、科學計算 , 計算流體力學, 通識教育
*個人網頁
經歷|Experience
財團法人技專技院入學測驗中心112年度數學科諮詢委員
教育部教學實踐研究計畫複審委員
財團法人技專技院入學測驗中心112年度數學科諮詢委員
教育部教學實踐研究計畫複審委員
教育部教學實踐研究期刊編輯委員
四技二專統一入學測驗顧問團諮詢小組委員
文藻外語大學通識教育中心主任
文藻外語學院研發處學術發展組組長
四技二專統一入學測驗顧問團諮詢小組委員
文藻外語大學通識教育中心主任
文藻外語學院研發處學術發展組組長
榮譽|Award
教育部113年師鐸獎
教育部第10屆全國傑出通識教育教師獎
教育部現代公民核心能力計畫績優課程(課群類:統計與生活101(1))
文藻外語大學科技部補助大專校院研究獎勵
文藻外語大學彈性薪資教學研究優良人員
文藻外語大學日間部優良導師
文藻外語大學研究成果績優獎
文藻外語大學科技部學術研究績優獎
教育部現代公民核心能力計畫績優課程(課群類:統計與生活101(1))
文藻外語大學科技部補助大專校院研究獎勵
文藻外語大學彈性薪資教學研究優良人員
文藻外語大學日間部優良導師
文藻外語大學研究成果績優獎
文藻外語大學科技部學術研究績優獎
學術著作|Scholarly Publications
[基礎科學研究]
H. C. Lee, H. Lee (2024), Stabilized equal lower-order finite element methods for simulating Brinkman equations in porous media, International Journal of Computer Mathematics (SCIE), 1-20. (SCIE)
H. C. Lee, M. C. Chen, J. Chu, M. C. Shiue (2024), Numerical simulation of basal crevasses of the tidewater glacier with Galerkin least-squares finite element method, Journal of Engineering Mathematics, 145(17), 1-24. (SCIE). H. C. Lee, H. Lee (2023), Equal lower-order finite elements of least-squares type in Biot poroelasticity modeling, Taiwanese Journal of Mathematics, 27(5): 971-988
H. C. Lee, H. Lee* (2022), A weighted least-squares finite element method for Biot's consolidation problem, International Journal of Numerical Analysis and Modeling, 19(2-3), 386-403 (SCIE).
Hsueh-Chen Lee (2021), A least-squares finite element method for steady flows across an unconfined square cylinder placed symmetrically in a plane channel, J. Math. Anal. Appl., 504 (2), 125426 (SCIE).
H. C. Lee, H. Lee (2021), An a posteriori error estimator based on least-squares finite element solutions for viscoelastic fluid flows. Electronic Research Archive,2021, 29(4), 2755-2770. (SCIE).
H. C. Lee, H. Lee (2021), An adaptive least-squares finite element method for Giesekus viscoelastic flow problems, International Journal of Computer Mathematics, 2021, 98(10), 1974-1990. (SCIE).
H. C. Lee, H. Lee (2019, Apr), Numerical simulations of viscoelastic fluid flows past a transverse slot using least-squares finite element methods, Journal of Scientific Computing, 79 (1), 369- 388 (SCIE).
Hsueh-Chen Lee (2018, Jan), Adaptive weights for mass conservation in a least-squares finite element method, International Journal of Computer Mathematics, 95(1), 20-35. (SCIE).
Hsueh-Chen Lee(2017, Jul), Numerical simulations of viscoelastic fluid flows using a least-squares finite element method based on Von Mises stress criteria. International Journal of Applied Physics and Mathematics, 7(3),157-164(EI).
Hsueh-Chen Lee (2015, Dec). A nonlinear weighted least-squares finite element method for the Carreau–Yasuda non-Newtonian model. Journal of Mathematical Analysis and Applications, 432, 844-861 (SCIE).
H. C. Lee, T. F. Chen (2015, Jan). Adaptive least-squares finite element approximations to Stokes Equations. Journal of Computational and Applied Mathematics, 280(2015), 396-412. (SCIE).
Hsueh-Chen Lee (2014, Feb). An adaptively refined least-squares finite element method for generalized Newtonian fluid flows using the Carreau model. SIAM Journal on Scientific Computing, 36(1), A193– A218. (SCIE).
Hsueh-Chen Lee (2014, Sep).Weighted least-squares finite element methods for the linearized Navier–Stokes equations. International Journal of Computer Mathematics, 91(9), 1964-1985. (SCIE).
Hsueh-Chen Lee (2012, Sep). A nonlinear weighted least-squares finite element method for the Oldroyd-B viscoelastic flow. Applied Mathematics and Computation, 219, 421-434. (SCIE).
T. F. Chen, C. L. Cox, H. C. Lee and K. L. Tung (2010, Oct). Least-squares finite element methods for generalized Newtonian and viscoelastic flows. Applied Numerical Mathematics, 60, 1024-1040. (SCIE).
H. C. Lee and T. F. Chen (2010, Jan). A nonlinear weighted least-squares finite element method for the Stokes equations. Computers and Mathematics with Applications, 59, 215-224. (SCIE).
[教學實務研究]
Hsueh-Chen Lee (July 2022), Creative Writing that Combines Mathematics and Literature, Journal of Humanistic Mathematics, 12(2), 460-471.
李雪甄 (2020 年 9月)。非線性裡的不安定靈魂。科學月刊,51(9), 52-55。
李雪甄 (2020年1月)。理有所依、情有所達、心有所歸:淺談數學詩文。數理人文,17, 88-95。
張慈珊、李雪甄 (2019年6月)。文學與數學的一場對話。數學傳播,43(2), 84-93。
張慈珊、李雪甄 (2019年3月)。連結瞬間:見數學 見文學 見自己。通識學刊:理念與實務,7(1), 73-108。
李雪甄 (2019 年 3月)。從乳房X光攝影篩檢看見貝氏定理。通識在線,14 (81),44-48。
李雪甄、吳宜真、吳秋慧、許雅惠、劉獻文 (2019 年 1月)。聆聽世界的聲音:通識課程跨領域溝通。通識在線,14 (80),75-83.
許淮之、李雪甄 (2018 年 11月)。跨領域合作融入通識課程之實作-以社會創新與社會創業為例。高雄文化研究2018年年刊,28-50。
李雪甄(2015年11月)。統計協奏曲:跨領域通識教育課程設計。通識在線,10(61),49-52。
H. C. Lee, M. C. Chen, J. Chu, M. C. Shiue (2024), Numerical simulation of basal crevasses of the tidewater glacier with Galerkin least-squares finite element method, Journal of Engineering Mathematics, 145(17), 1-24. (SCIE). H. C. Lee, H. Lee (2023), Equal lower-order finite elements of least-squares type in Biot poroelasticity modeling, Taiwanese Journal of Mathematics, 27(5): 971-988
H. C. Lee, H. Lee* (2022), A weighted least-squares finite element method for Biot's consolidation problem, International Journal of Numerical Analysis and Modeling, 19(2-3), 386-403 (SCIE).
Hsueh-Chen Lee (2021), A least-squares finite element method for steady flows across an unconfined square cylinder placed symmetrically in a plane channel, J. Math. Anal. Appl., 504 (2), 125426 (SCIE).
H. C. Lee, H. Lee (2021), An a posteriori error estimator based on least-squares finite element solutions for viscoelastic fluid flows. Electronic Research Archive,2021, 29(4), 2755-2770. (SCIE).
H. C. Lee, H. Lee (2021), An adaptive least-squares finite element method for Giesekus viscoelastic flow problems, International Journal of Computer Mathematics, 2021, 98(10), 1974-1990. (SCIE).
H. C. Lee, H. Lee (2019, Apr), Numerical simulations of viscoelastic fluid flows past a transverse slot using least-squares finite element methods, Journal of Scientific Computing, 79 (1), 369- 388 (SCIE).
Hsueh-Chen Lee (2018, Jan), Adaptive weights for mass conservation in a least-squares finite element method, International Journal of Computer Mathematics, 95(1), 20-35. (SCIE).
Hsueh-Chen Lee(2017, Jul), Numerical simulations of viscoelastic fluid flows using a least-squares finite element method based on Von Mises stress criteria. International Journal of Applied Physics and Mathematics, 7(3),157-164(EI).
Hsueh-Chen Lee (2015, Dec). A nonlinear weighted least-squares finite element method for the Carreau–Yasuda non-Newtonian model. Journal of Mathematical Analysis and Applications, 432, 844-861 (SCIE).
H. C. Lee, T. F. Chen (2015, Jan). Adaptive least-squares finite element approximations to Stokes Equations. Journal of Computational and Applied Mathematics, 280(2015), 396-412. (SCIE).
Hsueh-Chen Lee (2014, Feb). An adaptively refined least-squares finite element method for generalized Newtonian fluid flows using the Carreau model. SIAM Journal on Scientific Computing, 36(1), A193– A218. (SCIE).
Hsueh-Chen Lee (2014, Sep).Weighted least-squares finite element methods for the linearized Navier–Stokes equations. International Journal of Computer Mathematics, 91(9), 1964-1985. (SCIE).
Hsueh-Chen Lee (2012, Sep). A nonlinear weighted least-squares finite element method for the Oldroyd-B viscoelastic flow. Applied Mathematics and Computation, 219, 421-434. (SCIE).
T. F. Chen, C. L. Cox, H. C. Lee and K. L. Tung (2010, Oct). Least-squares finite element methods for generalized Newtonian and viscoelastic flows. Applied Numerical Mathematics, 60, 1024-1040. (SCIE).
H. C. Lee and T. F. Chen (2010, Jan). A nonlinear weighted least-squares finite element method for the Stokes equations. Computers and Mathematics with Applications, 59, 215-224. (SCIE).
[教學實務研究]
Hsueh-Chen Lee (July 2022), Creative Writing that Combines Mathematics and Literature, Journal of Humanistic Mathematics, 12(2), 460-471.
李雪甄 (2020 年 9月)。非線性裡的不安定靈魂。科學月刊,51(9), 52-55。
李雪甄 (2020年1月)。理有所依、情有所達、心有所歸:淺談數學詩文。數理人文,17, 88-95。
張慈珊、李雪甄 (2019年6月)。文學與數學的一場對話。數學傳播,43(2), 84-93。
張慈珊、李雪甄 (2019年3月)。連結瞬間:見數學 見文學 見自己。通識學刊:理念與實務,7(1), 73-108。
李雪甄 (2019 年 3月)。從乳房X光攝影篩檢看見貝氏定理。通識在線,14 (81),44-48。
李雪甄、吳宜真、吳秋慧、許雅惠、劉獻文 (2019 年 1月)。聆聽世界的聲音:通識課程跨領域溝通。通識在線,14 (80),75-83.
許淮之、李雪甄 (2018 年 11月)。跨領域合作融入通識課程之實作-以社會創新與社會創業為例。高雄文化研究2018年年刊,28-50。
李雪甄(2015年11月)。統計協奏曲:跨領域通識教育課程設計。通識在線,10(61),49-52。
李雪甄(2016年7月)。統計協奏曲:跨領域通識教育課程設計。於通識在線雜誌社編著,通往知識的秘徑:通識課程理念與教學實務,臺北市:開學文化,第281-295本文部分內容已於2015月發表於通識在線61期。